Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetraethylammonium bromidotricarbonyl[3,5,7-tribromotropolonato(1-)- $\kappa^2 O, O'$]rhenate(I)

Marietije Schutte, Hendrik G. Visser and Gideon Stevl*

Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa

Correspondence e-mail: geds12@yahoo.com

Received 25 October 2007: accepted 26 October 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.017; wR factor = 0.037; data-to-parameter ratio = 19.9.

In the salt $(C_8H_{20}N)[ReBr(C_7H_2Br_3O_2)(CO)_3]$, the bromidotricarbonyl(tribromotropolonato)rhenate(I) anion interacts with adjacent anions through intermolecular bromidobromido interactions [3.2675 (5)–3.4962 (4) Å]. The Re^{I} atom shows octahedral coordination. The crystal structure also involves $C-H \cdots O$ and $C-H \cdots Br$ interactions.

Related literature

For general background, see: Merlau et al. (2001); Abou-Hamdan et al. (1998); Keefe et al. (2003); Mines et al. (2002); Sun & Lees (2002). For related structures of diketonato complexes, see: Brasey et al. (2004); Crous et al. (2005); Roodt et al. (2003).

Experimental

Crystal data

(C₈H₂₀N)[ReBr(C₇H₂Br₃O₂)(CO)₃] $M_r = 838.21$ Triclinic. $P\overline{1}$ a = 8.9520 (3) Å b = 10.0667 (3) Å c = 15.3855 (7) Å $\alpha = 108.391 (2)^{\circ}$ $\beta = 92.198 (2)^{\circ}$

$\gamma = 112.888 \ (1)^{\circ}$
V = 1191.34 (8) Å ³
Z = 2
Mo $K\alpha$ radiation
$\mu = 11.84 \text{ mm}^{-1}$
T = 100 (2) K
$0.29 \times 0.11 \times 0.06 \text{ mm}$

metal-organic compounds

 $R_{\rm int} = 0.037$

39168 measured reflections

5202 independent reflections

4815 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\rm min} = 0.242, \ T_{\rm max} = 0.481$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.017$	262 parameters
$wR(F^2) = 0.037$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 1.07 \text{ e } \text{\AA}^{-3}$
5202 reflections	$\Delta \rho_{\rm min} = -0.94 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

	Нy	drogen-	bond	geometry	(A, '	0))
--	----	---------	------	----------	-------	----	---

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C18-H18 $C \cdots O8^{i}$ C4-H4 $\cdots O8^{ii}$	0.96 0.93 0.07	2.49 2.54 2.86	3.423 (3) 3.449 (3) 2.765 (2)	164 167
CII-HIIB····Br3···	0.97	2.80	3.765 (3)	155

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -v + 2, -z + 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97.

Financial assistance from the University of the Free State and Professor A. Roodt is gratefully acknowledged. Mr L. Kirsten is acknowledged for the data collection. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2352).

References

- Abou-Hamdan, A., Roodt, A. & Merbach, A. E. (1998). Inorg. Chem. 37, 1278-1288
- Brandenburg, K. & Putz, H. (2006). DIAMOND. Release 3.0e. Crystal Impact GbR, Bonn, Germany.
- Brasey, T., Buryak, A., Scopelliti, R. & Severin, K. (2004). Eur. J. Inorg. Chem. pp. 964-967.
- Bruker (1998). SADABS. Version 2004/1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). SAINT-Plus (including XPREP). Version 7.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108-1116.
- Keefe, M. H., O'Donnell, J. L., Bailey, R. C., Nguyen, S. T. & Hupp, J. T. (2003). Adv. Mater. 15, 1936-1939.
- Merlau, M. L., del Pilar Mejia, M., Nguyen, S. T. & Hupp, J. T. (2001). Angew. Chem. Int. Ed. 113, 4239-4242.

m3195

Mines, G. A., Tzeng, B.-C., Stevenson, K. G., Li, J. & Hupp, J. T. (2002). *Angew. Chem. Int. Ed.* **114**, 154–157.

Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, S.-S. & Lees, A. J. (2002). Coord. Chem. Rev. 230, 171–192.

Acta Cryst. (2007). E63, m3195-m3196 [doi:10.1107/S1600536807053457]

Tetraethylammonium bromidotricarbonyl[3,5,7-tribromotropolonato(1-)- $\kappa^2 O, O'$]rhenate(I)

M. Schutte, H. G. Visser and G. Steyl

Comment

The title compound, (I), is presented as an example of a fac-Re^I(CO)₃ fragment containing the highly substituted 3,5,7tribromotropolonato moiety, see Figure 1. These rhenium systems are commonly employed in catalysis [Merlau *et al.*, 2001; Abou-Hamdan *et al.*, 1998], sensing devices [Keefe *et al.*, 2003; Mines *et al.*, 2002] and building blocks in self-assembled metallomacrocycles [Sun & Lees, 2002]. A closely related derivative of 3-hydroxy-1,2,4-benzotriazine-4-one [Brasey *et al.*, 2004] have been reported.

The title complex crystallizes in the asymmetric unit with two independent ionic fragmets. The effect of the small bite angle of the tribromotropolonato moiety can be observed from the slightly distorted octahedral geometry around the Re^I metal centre, see Table 1.

An interesting observation in the title complex is the effect of weak intermolecular hydrogen bonding contacts between the cationic $[\text{NEt}_4]^+$ and anionic $[\text{ReBr}(\text{CO})_3\text{TropBr}_3]^-$ moieties, see Table 2. This solid state ordering is further enhanced through Br.·Br interactions between pairs of the bromonated tropolonato moieties, Br3.·Br7 [x, 1 + y, z] 3.2675 (5)/%A 168.4 (1)/% and Br7.·Br3 [x, -1 + y, z] 3.2675 (5)/%A 166.2 (1)/%, respectively. The bromido ligand on the metal centre is also involved in Br.·Br interactions with the brominated tropolonato ligand, Br5.·Br1 [2 - x, 1 - y, 1 - z] 3.4962 (4)/%A 165.1 (1)/%.

Experimental

The title complex was synthesized from the literature procedure [Brasey et al., 2004].

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C \text{ aromatic})$.

Figures

Fig. 1. : Representation of the title compound (I), showing the numbering scheme and displacement ellipsoids (50% probability). Hydrogen atoms omitted for clarity.

Tetraethylammonium bromidotricarbonyl[3,5,7-tribromotropolonato(1-)- $\kappa^2 O_i O'$]rhenate(I)

Crystal data

$(C_8H_{20}N)[ReBr(C_7H_2Br_3O_2)(CO)_3]$	<i>Z</i> = 2
$M_r = 838.21$	$F_{000} = 784$
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.337 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.9520 (3) Å	Cell parameters from 7112 reflections
b = 10.0667 (3) Å	$\theta = 2.5 - 28.3^{\circ}$
c = 15.3855 (7) Å	$\mu = 11.84 \text{ mm}^{-1}$
$\alpha = 108.391 \ (2)^{\circ}$	T = 100 (2) K
$\beta = 92.198 \ (2)^{\circ}$	Cuboid, red
$\gamma = 112.888 \ (1)^{\circ}$	$0.29 \times 0.11 \times 0.06 \text{ mm}$
$V = 1191.34 (8) \text{ Å}^3$	

Data collection

Bruker APEXII area-detector diffractometer	5202 independent reflections
Radiation source: fine-focus sealed tube	4815 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
Detector resolution: 512 pixels mm ⁻¹	$\theta_{\rm max} = 27.0^{\circ}$
T = 100(2) K	$\theta_{\min} = 2.3^{\circ}$
φ and ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$k = -12 \rightarrow 12$
$T_{\min} = 0.242, \ T_{\max} = 0.481$	$l = -19 \rightarrow 19$
39168 measured reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.017$
$wR(F^2) = 0.037$
<i>S</i> = 1.05
5202 reflections
262 parameters
Primary atom site location: structure-invaria methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0118P)^2 + 1.3206P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.07$ e Å⁻³ $\Delta\rho_{min} = -0.94$ e Å⁻³

ant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Re 0.532795 (13) 0.457269 (11) 0.769936 (7) 0.01223 (4) Br1 0.83966 (3) 0.63718 (3) 0.855160 (18) 0.01689 (6) Br7 0.72937 (5) 0.08570 (3) 0.56481 (2) 0.03019 (8) O1 0.6335 (2) 0.3195 (2) 0.66630 (12) 0.0156 (4) O2 0.6044 (2) 0.5569 (2) 0.66630 (12) 0.0124 (5) C2 0.6665 (3) 0.4926 (3) 0.60184 (17) 0.0124 (5) O9 0.4074 (2) 0.6863 (2) 0.88511 (14) 0.0226 (4) O8 0.1777 (2) 0.2494 (2) 0.666949 (14) 0.0239 (5) O10 0.4645 (3) 0.3058 (2) 0.91674 (14) 0.0238 (5) C3 0.7218 (3) 0.5592 (3) 0.53385 (18) 0.0136 (5) C7 0.7331 (3) 0.2587 (3) 0.53385 (18) 0.0142 (5) C4 0.7840 (3) 0.5125 (3) 0.45567 (17) 0.0144 (5) H4 0.8115 0.5777 0.4217 0.0175 (6) C5 0.3129 (3)<		x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Brl 0.83966 (3) 0.63718 (3) 0.855160 (18) 0.01689 (6) Br7 0.72937 (5) 0.08570 (3) 0.56481 (2) 0.03019 (8) O1 0.6335 (2) 0.3195 (2) 0.67748 (12) 0.0150 (4) O2 0.6044 (2) 0.5569 (2) 0.66630 (12) 0.0124 (5) C2 0.6665 (3) 0.4926 (3) 0.60184 (17) 0.0124 (5) O9 0.4074 (2) 0.6863 (2) 0.86511 (14) 0.0226 (4) O8 0.1777 (2) 0.2494 (2) 0.66949 (14) 0.0228 (5) O10 0.4645 (3) 0.3058 (2) 0.91674 (14) 0.0238 (5) C3 0.7218 (3) 0.5592 (3) 0.53951 (8) 0.0136 (5) C7 0.7331 (3) 0.2587 (3) 0.53904 (18) 0.0144 (5) C4 0.7840 (3) 0.5125 (3) 0.4556 (7) 0.0144 (5) H4 0.8115 0.5777 0.4217 0.017* C10 0.4905 (3) 0.3636 (3) 0.86116 (19) 0.0155 (5) H6 0.8130 0	Re	0.532795 (13)	0.457269 (11)	0.769936 (7)	0.01223 (4)
Br7 0.72937 (5) 0.08570 (3) 0.56481 (2) 0.03019 (8) O1 0.6335 (2) 0.3195 (2) 0.67748 (12) 0.0150 (4) O2 0.6044 (2) 0.5569 (2) 0.66630 (12) 0.0136 (4) C1 0.6785 (3) 0.3535 (3) 0.60665 (17) 0.0124 (5) C2 0.6665 (3) 0.4926 (3) 0.60184 (17) 0.0124 (5) O9 0.4074 (2) 0.6863 (2) 0.88511 (14) 0.0226 (4) O8 0.1777 (2) 0.2494 (2) 0.66949 (14) 0.0225 (5) O10 0.4645 (3) 0.3058 (2) 0.91674 (14) 0.0233 (5) C3 0.7218 (3) 0.5592 (3) 0.53385 (18) 0.0136 (5) C7 0.7331 (3) 0.2587 (3) 0.53904 (18) 0.0142 (5) C4 0.7840 (3) 0.5125 (3) 0.4556 (7) 0.0144 (5) H4 0.8115 0.5777 0.4217 0.017* C10 0.4905 (3) 0.3636 (3) 0.8416 (19) 0.0175 (5) C4 0.7840 (3) 0.	Br1	0.83966 (3)	0.63718 (3)	0.855160 (18)	0.01689 (6)
O1 0.6335 (2) 0.3195 (2) 0.67748 (12) 0.0150 (4) O2 0.6044 (2) 0.5569 (2) 0.66630 (12) 0.0136 (4) C1 0.6785 (3) 0.3535 (3) 0.60665 (17) 0.0124 (5) C2 0.6665 (3) 0.4926 (3) 0.60184 (17) 0.0124 (5) O9 0.4074 (2) 0.6863 (2) 0.88511 (14) 0.0226 (4) O8 0.1777 (2) 0.2494 (2) 0.66949 (14) 0.0259 (5) O10 0.4645 (3) 0.3058 (2) 0.91674 (14) 0.0238 (5) C3 0.7218 (3) 0.5592 (3) 0.53385 (18) 0.0148 (5) C7 0.7331 (3) 0.2587 (3) 0.53904 (18) 0.0148 (5) C7 0.7331 (3) 0.2587 (3) 0.84268 (18) 0.0162 (6) C4 0.7840 (3) 0.5125 (3) 0.45567 (17) 0.0144 (5) H4 0.8115 0.5777 0.4217 0.017* C10 0.4905 (3) 0.3267 (3) 0.7577 (18) 0.0164 (6) C6 0.7882 (3) 0.2	Br7	0.72937 (5)	0.08570 (3)	0.56481 (2)	0.03019 (8)
O2 0.6044 (2) 0.5569 (2) 0.66630 (12) 0.0136 (4) C1 0.6785 (3) 0.3535 (3) 0.60665 (17) 0.0124 (5) C2 0.6665 (3) 0.4926 (3) 0.60184 (17) 0.0124 (5) O9 0.4074 (2) 0.6863 (2) 0.88511 (14) 0.0226 (4) O8 0.1777 (2) 0.2494 (2) 0.66949 (14) 0.0259 (5) O10 0.4645 (3) 0.3058 (2) 0.91674 (14) 0.0238 (5) C3 0.7218 (3) 0.5592 (3) 0.53385 (18) 0.0148 (5) C7 0.7331 (3) 0.2587 (3) 0.5394 (18) 0.0142 (5) C4 0.7840 (3) 0.5125 (3) 0.45567 (17) 0.0144 (5) C4 0.7840 (3) 0.5125 (3) 0.45567 (17) 0.017* C10 0.4905 (3) 0.3636 (3) 0.86116 (19) 0.0175 (6) C8 0.3129 (3) 0.3267 (3) 0.7557 (18) 0.0155 (5) H6 0.8130 0.1871 0.4233 0.019* C5 0.8111 (3) 0.309 (3	01	0.6335 (2)	0.3195 (2)	0.67748 (12)	0.0150 (4)
C10.6785 (3)0.3535 (3)0.60665 (17)0.0124 (5)C20.6665 (3)0.4926 (3)0.60184 (17)0.0124 (5)O90.4074 (2)0.6863 (2)0.88511 (14)0.0226 (4)O80.1777 (2)0.2494 (2)0.66949 (14)0.0259 (5)O100.4645 (3)0.3058 (2)0.91674 (14)0.0283 (5)C30.7218 (3)0.5592 (3)0.53385 (18)0.0136 (5)C70.7331 (3)0.2587 (3)0.53904 (18)0.0148 (5)C90.4556 (3)0.5991 (3)0.84268 (18)0.0162 (6)C40.7840 (3)0.5125 (3)0.45567 (17)0.0144 (5)C40.7840 (3)0.5125 (3)0.45567 (17)0.017* (6)C100.4905 (3)0.3636 (3)0.86116 (19)0.0175 (6)C80.3129 (3)0.3267 (3)0.70577 (18)0.0164 (6)C60.7882 (3)0.2677 (3)0.45755 (18)0.0155 (5)H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.0178 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.0137 (4)C130.2088 (3)0.8280 (3)0.3198 (15)0.0137 (4)C140.3016 (3)1.0234 (3)0.19990 (19)0.0226 (6)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.014*C11 <t< td=""><td>O2</td><td>0.6044 (2)</td><td>0.5569 (2)</td><td>0.66630 (12)</td><td>0.0136 (4)</td></t<>	O2	0.6044 (2)	0.5569 (2)	0.66630 (12)	0.0136 (4)
C20.6665 (3)0.4926 (3)0.60184 (17)0.0124 (5)O90.4074 (2)0.6863 (2)0.88511 (14)0.0226 (4)O80.1777 (2)0.2494 (2)0.66949 (14)0.0259 (5)O100.4645 (3)0.3058 (2)0.91674 (14)0.0283 (5)C30.7218 (3)0.5592 (3)0.53385 (18)0.0136 (5)C70.7331 (3)0.2587 (3)0.53904 (18)0.0148 (5)C90.4556 (3)0.5991 (3)0.84268 (18)0.0162 (6)C40.7840 (3)0.5125 (3)0.45567 (17)0.0144 (5)H40.81150.57770.42170.017*C100.4905 (3)0.3636 (3)0.86116 (19)0.0175 (6)C80.3129 (3)0.2677 (3)0.70577 (18)0.0144 (5)H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8280 (3)0.33798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H13B0.16420.9999 (4)0.2193 (2)0.0267 (7)H14A0.33131.10770.1	C1	0.6785 (3)	0.3535 (3)	0.60665 (17)	0.0124 (5)
O90.4074 (2)0.6863 (2)0.88511 (14)0.0226 (4)O80.1777 (2)0.2494 (2)0.66949 (14)0.0259 (5)O100.4645 (3)0.3058 (2)0.91674 (14)0.0283 (5)C30.7218 (3)0.5592 (3)0.53385 (18)0.0136 (5)C70.7331 (3)0.2587 (3)0.53904 (18)0.0148 (5)C90.4556 (3)0.5991 (3)0.84268 (18)0.0162 (6)C40.7840 (3)0.5125 (3)0.45567 (17)0.0144 (5)H40.81150.57770.42170.017*C100.4905 (3)0.3636 (3)0.86116 (19)0.0155 (5)C80.3129 (3)0.3267 (3)0.70577 (18)0.0164 (6)C60.7882 (3)0.2677 (3)0.45755 (18)0.0155 (5)H60.811300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42085 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.0178 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0224 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*H11B0.26481.09390.2636	C2	0.6665 (3)	0.4926 (3)	0.60184 (17)	0.0124 (5)
O80.1777 (2)0.2494 (2)0.66949 (14)0.0259 (5)O100.4645 (3)0.3058 (2)0.91674 (14)0.0283 (5)C30.7218 (3)0.5592 (3)0.53385 (18)0.0136 (5)C70.7331 (3)0.2587 (3)0.53904 (18)0.0148 (5)C90.4556 (3)0.5991 (3)0.84268 (18)0.0162 (6)C40.7840 (3)0.5125 (3)0.45567 (17)0.0144 (5)H40.81150.57770.42170.017*C100.4905 (3)0.3636 (3)0.86116 (19)0.0175 (6)C80.3129 (3)0.2677 (3)0.45755 (18)0.0155 (5)H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*H11B0.26481.05470.25830.024*H11B0.26481.05470.25830.024*H112B0.49440.97200.16240.40*H12B <td>09</td> <td>0.4074 (2)</td> <td>0.6863 (2)</td> <td>0.88511 (14)</td> <td>0.0226 (4)</td>	09	0.4074 (2)	0.6863 (2)	0.88511 (14)	0.0226 (4)
O100.4645 (3)0.3058 (2)0.91674 (14)0.0283 (5)C30.7218 (3)0.5592 (3)0.53385 (18)0.0136 (5)C70.7331 (3)0.2587 (3)0.53904 (18)0.0148 (5)C90.4556 (3)0.5991 (3)0.84268 (18)0.0162 (6)C40.7840 (3)0.5125 (3)0.45567 (17)0.0144 (5)H40.81150.57770.42170.017*C100.4905 (3)0.3636 (3)0.86116 (19)0.0175 (6)C80.3129 (3)0.3267 (3)0.70577 (18)0.0164 (6)C60.7882 (3)0.2677 (3)0.45755 (18)0.0155 (5)H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.02090 (7)N10.1588 (3)0.8844 (2)0.13098 (15)0.0137 (4)C130.2088 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*H11B0.26481.05470.25830.024*H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C <td< td=""><td>08</td><td>0.1777 (2)</td><td>0.2494 (2)</td><td>0.66949 (14)</td><td>0.0259 (5)</td></td<>	08	0.1777 (2)	0.2494 (2)	0.66949 (14)	0.0259 (5)
C30.7218 (3)0.5592 (3)0.53385 (18)0.0136 (5)C70.7331 (3)0.2587 (3)0.53904 (18)0.0148 (5)C90.4556 (3)0.5991 (3)0.84268 (18)0.0162 (6)C40.7840 (3)0.5125 (3)0.45567 (17)0.0144 (5)H40.81150.57770.42170.017*C100.4905 (3)0.3636 (3)0.86116 (19)0.0175 (6)C80.3129 (3)0.3267 (3)0.70577 (18)0.0164 (6)C60.7882 (3)0.2677 (3)0.45755 (18)0.0155 (5)H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*H11B0.26481.05470.25830.024*H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.40*H12C0.42780.91890.24420.040*	O10	0.4645 (3)	0.3058 (2)	0.91674 (14)	0.0283 (5)
C70.7331 (3)0.2587 (3)0.53904 (18)0.0148 (5)C90.4556 (3)0.5991 (3)0.84268 (18)0.0162 (6)C40.7840 (3)0.5125 (3)0.45567 (17)0.0144 (5)H40.81150.57770.42170.017*C100.4905 (3)0.3636 (3)0.86116 (19)0.0175 (6)C80.3129 (3)0.3267 (3)0.70577 (18)0.0164 (6)C60.7882 (3)0.2677 (3)0.45755 (18)0.0155 (5)H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*H12B0.49440.97200.16240.40*H12B0.49440.97200.16240.40*H12C0.42780.91890.24420.404*	C3	0.7218 (3)	0.5592 (3)	0.53385 (18)	0.0136 (5)
C90.4556 (3)0.5991 (3)0.84268 (18)0.0162 (6)C40.7840 (3)0.5125 (3)0.45567 (17)0.0144 (5)H40.81150.57770.42170.017*C100.4905 (3)0.3636 (3)0.86116 (19)0.0175 (6)C80.3129 (3)0.3267 (3)0.70577 (18)0.0164 (6)C60.7882 (3)0.2677 (3)0.45755 (18)0.0155 (5)H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*H11B0.26481.05470.25830.024*H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.404*H12C0.42780.91890.24420.404*	C7	0.7331 (3)	0.2587 (3)	0.53904 (18)	0.0148 (5)
C40.7840 (3)0.5125 (3)0.45567 (17)0.0144 (5)H40.81150.57770.42170.017*C100.4905 (3)0.3636 (3)0.86116 (19)0.0175 (6)C80.3129 (3)0.3267 (3)0.70577 (18)0.0164 (6)C60.7882 (3)0.2677 (3)0.45755 (18)0.0155 (5)H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*H11B0.26481.05470.25830.024*H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.40*H12C0.42780.91890.24420.040*	С9	0.4556 (3)	0.5991 (3)	0.84268 (18)	0.0162 (6)
H40.81150.57770.42170.017*C100.4905 (3)0.3636 (3)0.86116 (19)0.0175 (6)C80.3129 (3)0.3267 (3)0.70577 (18)0.0164 (6)C60.7882 (3)0.2677 (3)0.45755 (18)0.0155 (5)H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*H12A0.53761.09390.26360.040*H12A0.53761.09390.26360.040*H12B0.42780.91890.24420.040*	C4	0.7840 (3)	0.5125 (3)	0.45567 (17)	0.0144 (5)
C100.4905 (3)0.3636 (3)0.86116 (19)0.0175 (6)C80.3129 (3)0.3267 (3)0.70577 (18)0.0164 (6)C60.7882 (3)0.2677 (3)0.45755 (18)0.0155 (5)H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8844 (2)0.13098 (15)0.0137 (4)C130.2088 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*H11B0.53761.09390.26360.040*H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	H4	0.8115	0.5777	0.4217	0.017*
C80.3129 (3)0.3267 (3)0.70577 (18)0.0164 (6)C60.7882 (3)0.2677 (3)0.45755 (18)0.0155 (5)H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8844 (2)0.13098 (15)0.0137 (4)C130.2088 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*H12B0.49440.97200.16240.400*H12C0.42780.91890.24420.040*	C10	0.4905 (3)	0.3636 (3)	0.86116 (19)	0.0175 (6)
C60.7882 (3)0.2677 (3)0.45755 (18)0.0155 (5)H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8844 (2)0.13098 (15)0.0137 (4)C130.2088 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	C8	0.3129 (3)	0.3267 (3)	0.70577 (18)	0.0164 (6)
H60.81300.18710.42330.019*C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8844 (2)0.13098 (15)0.0137 (4)C130.2088 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*C120.4542 (4)0.9999 (4)0.2193 (2)0.0267 (7)H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	C6	0.7882 (3)	0.2677 (3)	0.45755 (18)	0.0155 (5)
C50.8111 (3)0.3809 (3)0.42055 (17)0.0142 (5)Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8844 (2)0.13098 (15)0.0137 (4)C130.2088 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*C120.4542 (4)0.9999 (4)0.2193 (2)0.0267 (7)H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	H6	0.8130	0.1871	0.4233	0.019*
Br50.90032 (3)0.35922 (3)0.308775 (18)0.01785 (6)Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8844 (2)0.13098 (15)0.0137 (4)C130.2088 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*C120.4542 (4)0.9999 (4)0.2193 (2)0.0267 (7)H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	C5	0.8111 (3)	0.3809 (3)	0.42055 (17)	0.0142 (5)
Br30.70316 (4)0.74797 (3)0.554539 (18)0.02090 (7)N10.1588 (3)0.8844 (2)0.13098 (15)0.0137 (4)C130.2088 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*C120.4542 (4)0.9999 (4)0.2193 (2)0.0267 (7)H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	Br5	0.90032 (3)	0.35922 (3)	0.308775 (18)	0.01785 (6)
N10.1588 (3)0.8844 (2)0.13098 (15)0.0137 (4)C130.2088 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*C120.4542 (4)0.9999 (4)0.2193 (2)0.0267 (7)H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	Br3	0.70316 (4)	0.74797 (3)	0.554539 (18)	0.02090 (7)
C130.2088 (3)0.8280 (3)0.03798 (18)0.0151 (5)H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*C120.4542 (4)0.9999 (4)0.2193 (2)0.0267 (7)H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	N1	0.1588 (3)	0.8844 (2)	0.13098 (15)	0.0137 (4)
H13A0.29370.79400.04740.018*H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*C120.4542 (4)0.9999 (4)0.2193 (2)0.0267 (7)H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	C13	0.2088 (3)	0.8280 (3)	0.03798 (18)	0.0151 (5)
H13B0.11420.7387-0.00390.018*C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*C120.4542 (4)0.9999 (4)0.2193 (2)0.0267 (7)H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	H13A	0.2937	0.7940	0.0474	0.018*
C110.3016 (3)1.0234 (3)0.19990 (19)0.0202 (6)H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*C120.4542 (4)0.9999 (4)0.2193 (2)0.0267 (7)H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	H13B	0.1142	0.7387	-0.0039	0.018*
H11A0.33131.10770.17680.024*H11B0.26481.05470.25830.024*C120.4542 (4)0.9999 (4)0.2193 (2)0.0267 (7)H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	C11	0.3016 (3)	1.0234 (3)	0.19990 (19)	0.0202 (6)
H11B0.26481.05470.25830.024*C120.4542 (4)0.9999 (4)0.2193 (2)0.0267 (7)H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	H11A	0.3313	1.1077	0.1768	0.024*
C120.4542 (4)0.9999 (4)0.2193 (2)0.0267 (7)H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	H11B	0.2648	1.0547	0.2583	0.024*
H12A0.53761.09390.26360.040*H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	C12	0.4542 (4)	0.9999 (4)	0.2193 (2)	0.0267 (7)
H12B0.49440.97200.16240.040*H12C0.42780.91890.24420.040*	H12A	0.5376	1.0939	0.2636	0.040*
H12C 0.4278 0.9189 0.2442 0.040*	H12B	0.4944	0.9720	0.1624	0.040*
	H12C	0.4278	0.9189	0.2442	0.040*

C17	0.0210(3)	0.9313 (3)	0.11604 (18)	0.0161 (6)
H17A	-0.0681	0.8443	0.0689	0.019*
H17B	0.0618	1.0145	0.0919	0.019*
C16	-0.0599 (3)	0.6199 (3)	0.1175 (2)	0.0205 (6)
H16A	-0.0858	0.5435	0.1461	0.031*
H16B	-0.0524	0.5752	0.0537	0.031*
H16C	-0.1451	0.6558	0.1201	0.031*
C15	0.1032 (3)	0.7543 (3)	0.16911 (19)	0.0185 (6)
H15A	0.1875	0.7159	0.1674	0.022*
H15B	0.0949	0.7961	0.2339	0.022*
C18	-0.0482 (4)	0.9838 (3)	0.20244 (19)	0.0215 (6)
H18A	-0.1343	1.0112	0.1868	0.032*
H18B	0.0381	1.0720	0.2491	0.032*
H18C	-0.0920	0.9015	0.2261	0.032*
C14	0.2724 (4)	0.9454 (3)	-0.00897 (19)	0.0208 (6)
H14A	0.3007	0.8996	-0.0670	0.031*
H14B	0.3684	1.0331	0.0308	0.031*
H14C	0.1884	0.9778	-0.0206	0.031*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Re	0.01471 (6)	0.01303 (6)	0.00992 (6)	0.00557 (4)	0.00251 (4)	0.00571 (4)
Br1	0.01523 (13)	0.01916 (13)	0.01356 (13)	0.00593 (11)	0.00087 (10)	0.00433 (11)
Br7	0.0631 (2)	0.02116 (15)	0.01990 (15)	0.02841 (16)	0.01035 (15)	0.01089 (12)
01	0.0228 (10)	0.0132 (9)	0.0120 (9)	0.0087 (8)	0.0028 (8)	0.0069 (8)
O2	0.0185 (10)	0.0135 (9)	0.0128 (9)	0.0088 (8)	0.0046 (8)	0.0067 (7)
C1	0.0129 (13)	0.0099 (12)	0.0122 (13)	0.0029 (10)	-0.0015 (10)	0.0041 (10)
C2	0.0116 (13)	0.0105 (12)	0.0118 (13)	0.0027 (10)	-0.0028 (10)	0.0028 (10)
09	0.0237 (11)	0.0221 (10)	0.0227 (11)	0.0113 (9)	0.0061 (9)	0.0066 (9)
08	0.0210 (12)	0.0282 (11)	0.0203 (11)	-0.0006 (10)	-0.0023 (9)	0.0131 (9)
O10	0.0381 (13)	0.0338 (12)	0.0223 (11)	0.0163 (11)	0.0096 (10)	0.0201 (10)
C3	0.0175 (14)	0.0092 (12)	0.0138 (13)	0.0065 (11)	-0.0003 (11)	0.0031 (10)
C7	0.0188 (14)	0.0102 (12)	0.0162 (14)	0.0065 (11)	-0.0002 (11)	0.0056 (11)
C9	0.0159 (14)	0.0201 (14)	0.0135 (13)	0.0062 (12)	0.0022 (11)	0.0092 (11)
C4	0.0167 (14)	0.0145 (13)	0.0102 (13)	0.0037 (11)	0.0006 (10)	0.0058 (11)
C10	0.0175 (14)	0.0182 (14)	0.0163 (14)	0.0086 (12)	0.0021 (11)	0.0045 (12)
C8	0.0212 (15)	0.0183 (14)	0.0119 (13)	0.0058 (12)	0.0044 (11)	0.0111 (11)
C6	0.0174 (14)	0.0145 (13)	0.0132 (13)	0.0085 (11)	0.0001 (11)	0.0015 (11)
C5	0.0137 (13)	0.0186 (13)	0.0080 (12)	0.0055 (11)	0.0015 (10)	0.0036 (10)
Br5	0.02020 (14)	0.02090 (14)	0.01201 (13)	0.00902 (12)	0.00518 (11)	0.00470 (11)
Br3	0.04105 (18)	0.01303 (13)	0.01313 (13)	0.01459 (13)	0.00591 (12)	0.00633 (11)
N1	0.0157 (11)	0.0131 (11)	0.0106 (11)	0.0054 (9)	-0.0005 (9)	0.0034 (9)
C13	0.0171 (14)	0.0169 (13)	0.0113 (13)	0.0084 (11)	0.0024 (11)	0.0037 (11)
C11	0.0202 (15)	0.0169 (14)	0.0129 (14)	0.0014 (12)	-0.0006 (11)	0.0007 (11)
C12	0.0192 (16)	0.0290 (16)	0.0213 (16)	0.0021 (13)	-0.0026 (12)	0.0068 (13)
C17	0.0212 (14)	0.0151 (13)	0.0151 (14)	0.0104 (12)	0.0045 (11)	0.0060 (11)
C16	0.0194 (15)	0.0137 (13)	0.0277 (16)	0.0056 (12)	0.0065 (12)	0.0080 (12)

C15	0.0222 (15)	0.0177 (14)	0.0176 (14)	0.0080 (12)	0.0028 (12)	0.0096 (12)
C18	0.0271 (16)	0.0228 (15)	0.0205 (15)	0.0138 (13)	0.0102 (12)	0.0104 (12)
C14	0.0238 (16)	0.0256 (15)	0.0181 (15)	0.0133 (13)	0.0091 (12)	0.0099 (12)
Coorrectuicer	augustaug (Å 9)					
Geometric pe	arameters (A, ⁻)					
Re—C9		1.894 (3)	N1—	C15	1.5	19 (3)
Re—C8		1.897 (3)	C13–	C14	1.5	13 (4)
Re-C10		1.898 (3)	C13–	-H13A	0.9	700
Re—O2		2.1322 (17)	C13–	-H13B	0.9	700
Re—O1		2.1411 (18)	C11–	-C12	1.5	08 (4)
Re—Br1		2.6270 (3)	C11–	-H11A	0.9	700
Br7—C7		1.893 (2)	C11–	-H11B	0.9	700
O1—C1		1.276 (3)	C12-	-H12A	0.9	600
O2—C2		1.276 (3)	C12-	-H12B	0.9	600
C1—C7		1.416 (4)	C12-	-H12C	0.9	600
C1—C2		1.470 (3)	C17–	-C18	1.5	18 (4)
C2—C3		1.419 (4)	C17–	-H17A	0.9	700
О9—С9		1.156 (3)	C17–	–H17B	0.9	700
O8—C8		1.150 (3)	C16–	-C15	1.5	13 (4)
O10-C10		1.161 (3)	C16–	-H16A	0.9	600
C3—C4		1.370 (4)	C16–	-H16B	0.9	600
C3—Br3		1.900 (2)	C16–	-H16C	0.9	600
С7—С6		1.381 (4)	C15–	-H15A	0.9	700
C4—C5		1.383 (4)	C15–	-H15B	0.9	700
C4—H4		0.9300	C18–	-H18A	0.9	600
C6—C5		1.379 (4)	C18–	-H18B	0.9	600
С6—Н6		0.9300	C18–	-H18C	0.9	600
C5—Br5		1.909 (3)	C14–	-H14A	0.9	600
N1-C11		1.511 (3)	C14–	-H14B	0.9	600
N1-C17		1.515 (3)	C14–	-H14C	0.9	600
N1-C13		1.518 (3)				
C9—Re—C8		88.62 (12)	C14–	C13H13A	108	3.4
C9—Re—C1	0	86.86 (11)	N1—	C13—H13A	108	3.4
C8—Re—C1	0	88.99 (11)	C14–	C13H13B	108	3.4
C9—Re—O2		98.38 (9)	N1—	C13—H13B	108	3.4
C8—Re—O2		95.05 (9)	H13A	—С13—Н13В	107	1.5
C10—Re—O	2	173.44 (9)	C12-		115	.6 (2)
C9—Re—O1		171.81 (9)	C12-	-C11-H11A	108	3.4
C8—Re—O1		93.43 (10)	N1—	C11—H11A	108	3.4
C10—Re—O	1	101.08 (9)	C12-	-C11—H11B	108	3.4
O2—Re—O1		73.56 (6)	N1—	C11—H11B	108	3.4
C9—Re—Brl	1	92.28 (8)	H11A	—C11—H11B	107	.4
C8—Re—Brl	1	178.69 (8)	C11-	-C12-H12A	109	.5
C10—Re—B	r1	92.00 (8)	C11-	-C12-H12B	109	.5
O2—Re—Br	1	83.89 (5)	H12A	—С12—Н12В	109	.5
O1—Re—Br	1	85.55 (5)	C11–	-C12-H12C	109	.5
C1—O1—Re		117.78 (15)	H12A	—С12—Н12С	109	.5
C2—O2—Re		118.07 (15)	H12E	С12—Н12С	109	0.5

O1—C1—C7	120.2 (2)	N1—C17—C18	115.0 (2)
01—C1—C2	115.1 (2)	N1—C17—H17A	108.5
C7—C1—C2	124.7 (2)	С18—С17—Н17А	108.5
O2—C2—C3	119.7 (2)	N1—C17—H17B	108.5
O2—C2—C1	115.3 (2)	С18—С17—Н17В	108.5
C3—C2—C1	125.0 (2)	H17A—C17—H17B	107.5
C4—C3—C2	132.3 (2)	C15—C16—H16A	109.5
C4—C3—Br3	113.97 (19)	C15—C16—H16B	109.5
C2—C3—Br3	113.70 (18)	H16A—C16—H16B	109.5
C6—C7—C1	132.4 (2)	C15—C16—H16C	109.5
C6—C7—Br7	113.58 (19)	H16A—C16—H16C	109.5
C1—C7—Br7	114.01 (19)	H16B—C16—H16C	109.5
O9—C9—Re	178.3 (2)	C16—C15—N1	114.9 (2)
C3—C4—C5	128.5 (2)	C16-C15-H15A	108.5
C3—C4—H4	115.8	N1-C15-H15A	108.5
С5—С4—Н4	115.8	C16—C15—H15B	108.5
O10-C10-Re	179.8 (2)	N1-C15-H15B	108.5
O8—C8—Re	177.7 (2)	H15A—C15—H15B	107.5
C5—C6—C7	128.3 (2)	C17—C18—H18A	109.5
С5—С6—Н6	115.9	C17—C18—H18B	109.5
С7—С6—Н6	115.9	H18A—C18—H18B	109.5
C6—C5—C4	128.5 (2)	C17—C18—H18C	109.5
C6—C5—Br5	116.31 (19)	H18A—C18—H18C	109.5
C4—C5—Br5	115.13 (19)	H18B—C18—H18C	109.5
C11—N1—C17	108.3 (2)	C13—C14—H14A	109.5
C11—N1—C13	111.1 (2)	C13—C14—H14B	109.5
C17—N1—C13	108.73 (19)	H14A—C14—H14B	109.5
C11—N1—C15	109.1 (2)	C13—C14—H14C	109.5
C17—N1—C15	111.3 (2)	H14A—C14—H14C	109.5
C13—N1—C15	108.26 (19)	H14B—C14—H14C	109.5
C14—C13—N1	115.4 (2)		
C8—Re—O1—C1	91.20 (19)	O1—C1—C7—Br7	0.4 (3)
C10—Re—O1—C1	-179.16 (19)	C2-C1-C7-Br7	-178.69 (19)
O2-Re-O1-C1	-3.06 (17)	C2—C3—C4—C5	-0.2 (5)
Br1—Re—O1—C1	-87.99 (17)	Br3—C3—C4—C5	-179.2 (2)
C9—Re—O2—C2	179.53 (18)	C1—C7—C6—C5	2.7 (5)
C8—Re—O2—C2	-91.12 (19)	Br7—C7—C6—C5	-177.6 (2)
O1—Re—O2—C2	0.97 (17)	C7—C6—C5—C4	-0.3 (5)
Br1—Re—O2—C2	88.11 (17)	C7—C6—C5—Br5	176.9 (2)
Re—O1—C1—C7	-174.73 (18)	C3—C4—C5—C6	-2.7 (5)
Re-O1-C1-C2	4.5 (3)	C3—C4—C5—Br5	180.0 (2)
Re	-177.45 (18)	C11—N1—C13—C14	-58.5 (3)
Re	0.9 (3)	C17—N1—C13—C14	60.6 (3)
O1—C1—C2—O2	-3.6 (3)	C15—N1—C13—C14	-178.4 (2)
C7—C1—C2—O2	175.6 (2)	C17—N1—C11—C12	-176.8 (2)
O1—C1—C2—C3	174.7 (2)	C13—N1—C11—C12	-57.5 (3)
C7—C1—C2—C3	-6.1 (4)	C15—N1—C11—C12	61.8 (3)
O2—C2—C3—C4	-176.0 (3)	C11—N1—C17—C18	-61.8 (3)
C1—C2—C3—C4	5.8 (5)	C13—N1—C17—C18	177.3 (2)

O2—C2—C3—Br3	3.0 (3)	C15—N1—C17—C18		58.2 (3)
C1—C2—C3—Br3	-175.16 (19)	C11—N1—C15—C16		168.0 (2)
O1—C1—C7—C6	-179.8 (3)	C17—N1—C15—C16		48.5 (3)
C2—C1—C7—C6	1.1 (5)	C13—N1—C15—C16		-70.9 (3)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C18—H18C····O8 ⁱ	0.96	2.49	3.423 (3)	164
C4—H4····O8 ⁱⁱ	0.93	2.54	3.449 (3)	167
C11—H11B····Br3 ⁱⁱⁱ	0.97	2.86	3.765 (3)	155
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$; (ii) $-x+1$, $-y+1$, $-z+1$; (iii) $-x+1$, $-y+2$, $-z+1$.				

Fig. 1